归并排序是建立在归并操作上的一种有效的排序算法,1945年由约翰·冯·诺伊曼首次提出。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用,且各层分治递归可以同时进行。归并排序(Merge Sort)是建立在归并操作上的一种有效,稳定的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。
归并排序算法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。
采用递归法:
(1)将序列每相邻两个数字进行归并操作,形成 floor(n/2)个序列,排序后每个序列包含两个元素;
(2)将上述序列再次归并,形成 floor(n/4)个序列,每个序列包含四个元素;
(3)重复步骤②,直到所有元素排序完毕
package com.fufu.algorithm.sort;
import java.util.Arrays;
/**
* Created by zhoujunfu on 2018/8/10.
*/
public class MergeSort {
public static int[] sort(int [] a) {
if (a.length <= 1) {
return a;
}
int num = a.length >> 1;
int[] left = Arrays.copyOfRange(a, 0, num);
int[] right = Arrays.copyOfRange(a, num, a.length);
return mergeTwoArray(sort(left), sort(right));
}
public static int[] mergeTwoArray(int[] a, int[] b) {
int i = 0, j = 0, k = 0;
int[] result = new int[a.length + b.length]; // 申请额外空间保存归并之后数据
while (i < a.length && j < b.length) { //选取两个序列中的较小值放入新数组
if (a[i] <= b[j]) {
result[k++] = a[i++];
} else {
result[k++] = b[j++];
}
}
while (i < a.length) { //序列a中多余的元素移入新数组
result[k++] = a[i++];
}
while (j < b.length) {//序列b中多余的元素移入新数组
result[k++] = b[j++];
}
return result;
}
public static void main(String[] args) {
int[] b = {3, 1, 5, 4};
System.out.println(Arrays.toString(sort(b)));
}
}
平均时间复杂度 | 最好情况 | 最坏情况 | 空间复杂度 |
---|---|---|---|
O(nlogn) | O(nlogn) | O(nlogn) | O(n) |
归并排序是一种稳定排序算法,从效率上看,归并排序可算是排序算法中的”佼佼者”. 假设数组长度为n,那么拆分数组共需logn, 又每步都是一个普通的合并子数组的过程,时间复杂度为O(n), 故其综合时间复杂度为O(nlogn)。另一方面, 归并排序多次递归过程中拆分的子数组需要保存在内存空间, 其空间复杂度为O(n)。 和选择排序一样,归并排序的性能不受输入数据的影响,但表现比选择排序好的多,因为始终都是O(nlogn)的时间复杂度。代价是需要额外的内存空间。我们也可以在动力节点在线的算法专题视频课程中对比其它的排序算法的时间复杂度和空间复杂度来评判归并排序算法的算法效率。
提枪策马乘胜追击04-21 20:01
代码小兵92504-17 16:07
代码小兵98804-25 13:57
杨晶珍05-11 14:54